

Effects of mitigation policies on future PM emissions from on-road vehicles

Fang Yan, Ekbordin Winijkul, Tami C. Bond

University of Illinois at Urbana-Champaign

David G. Streets

University of Chicago & Argonne National Laboratory

Outline

Background

- Mitigation and BC reduction
- Ideal candidates for BC control: diesel vehicles

Approach to modeling

- Speciated Pollutants Emission Wizard (SPEW)-Trend
- Fundamental idea of engineering model

Definition and mechanics

- Scrappage
- Retrofit

Methods

- Scenario analysis
- Monte Carlo simulations
- Results and conclusion

Argonne National Laboratory

Mitigation and black carbon (BC) reduction

Figure 1. Global benefits from full implementation of the identified measures in 2030 compared to the reference scenario. The climate change benefit is estimated for a given year (2050) and human health and crop benefits are for 2030 and beyond. (UNEP, 2011)

Ideal candidates for BC control: diesel vehicles

- Very low ratio of OC/BC
- Substantial health co-benefits
- Control technology available (PM control programs)
 - Emission standards: all new vehicles
 - Scrappage: diesel and gasoline Existing vehicles
 - Retrofit: diesel

 However, deficiency in the determination of emission reduction potential in the future, especially with consideration of uncertainty

Speciated Pollutants Emission Wizard (SPEW)-Trend

- A dynamic technology model developed by Dr. Bond's group at University of Illinois at Urbana-Champaign
 - Driven by activity provided by economic models
 - Based on historical consumer behavior
 - Tabulates dynamic technology splits
 - Flexible and consistent

Fundamental idea of engineering model

Scrappage

 Scrappage, or fast scrappage: replacement before their owners would otherwise scrap them

Key questions:

Accelerated retirement rate

How does scrappage work?

How does scrappage work?

Retrofit

- Retrofit: Technology or device applied to an existing diesel vehicle or engine to reduce emissions
 - Diesel particulate filters (DPFs): PM, >90%
- Similar key questions: What, when and what rate?
- Additionally: to which technology or emission standard can an old one be retrofitted?

How clean?

How does retrofit work?

How does retrofit work?

Methods

- All emission projections are based on A1B scenario
- Scenario analysis
 - Designed policy scenarios (key variables)
 - From most to least aggressive programs (best to worst)
- Monte Carlo simulations (MCS)

Cases	Parameters setup		
Baseline	Replace uncertain variables with probability distributions		
Scrappage	Baseline + fixed variables for scrappage program		
Retrofit	Baseline + fixed variable for retrofit program		

Results from scenario analysis

- Scrappage: an immediate and higher emission reduction
- Retrofit: reduces emissions more in later years when very advanced technology becomes available in most regions

Policy	Year	90% CI of [E(w/policy)-E(baseline)] [absolute value (Gg/yr)]	90% CI of [E(w/policy)/E(baseline)-1] [relative emission change]
Scrappage	2015	-683 ± 318	-62%to -41%
	2030	-376 ± 285	-49% to -22%
Retrofit	2015	-40± 36	-4% to -1%
	2030	-166 ± 114	-23% to -9%

Most emission reductions occur in regions where

- Policies are implemented in conjunction with the introduction of new technologies with significantly lower emissions
- Retirement rate is slower, so old vehicles have accumulated and superemitter fraction is high

Conclusions

- Scrappage and retrofit policies have high potential to reduce emissions
- A 90% confidence interval of global emission reductions in 2030 is
 - 22% to 49% by scrappage
 - 9% to 23% by retrofit
- More emission reductions occur in regions where
 - significantly cleaner standards are implemented simultaneously
 - retirement rate is slower and old vehicles can be accumulated
 - the superemitter fraction is high

More information

- Yan. F, E. Winijkul, S. Jung, T. C. Bond and D. G. Streets (2011), Global emission projections of particulate matter: I. Exhaust emissions from onroad vehicles, Volume 45, Issue 28, Pages 4830–4844
- Yan. F, E. Winijkul, T.C. Bond, and D. G. Streets, Global emission projections of particulate matter: II. Uncertainty analysis for on-road vehicles exhaust emission (ready to submit)
- Winijkul, E., F. Yan, and T.C. Bond, Current and future global diesel emission from non-road Equipment (ready to submit)

Acknowledgements

Thank you@ Questions?

